top of page
AI pixabay huge.jpg

Explainable artificial intelligence for mental health through transparency and interpretability for

We describe the TIFU (Transparency and Interpretability For Understandability) framework and examine how this applies to the landscape of AI/ML in mental health research. We argue that the need for understandablity is heightened in psychiatry because data describing the syndromes, outcomes, disorders and signs/symptoms possess probabilistic relationships to each other—as do the tentative aetiologies and multifactorial social- and psychological-determinants of disorders. If we develop and deploy AI/ML models, ensuring human understandability of the inputs, processes and outputs of these models is essential to develop trustworthy systems fit for deployment.





Comentários


bottom of page