We review current models of paying for AI in medicine and describe five alternative and complementary reimbursement approaches, including incentivizing outcomes instead of volume, utilizing advance market commitments and time-limited reimbursements for new AI applications, and rewarding interoperability and bias mitigation. As AI rapidly integrates into routine healthcare, careful design of payment for AI is essential for improving patient outcomes while maximizing cost-effectiveness and equity.
top of page
Search
bottom of page